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Abstract
Computer modeling is used to estimate physical quantities that are difficult to measure, in this case,
the landing shock experienced by ski jumpers. The landing shock is difficult to measure because
attaching instruments to the skiers would affect their balance and possibly cause them to fall or
reduce their performance.  Using basic principals of physics, the flight trajectories of two forms of
competitive ski jumping, Freestyle Aerialist and Nordic Jumpers, were modeled and the landing
shocks compared. The model uses physical quantities such as the takeoff inclination, takeoff height,
the shape of the hill, and the vertical drop to the landing. The landing shock is calculated from the
velocity of the skier and angle which he or she hits the hill. For comparison to other sports, the
landing shock is converted to a vertical drop to a flat surface.

The model shows that Freestyle Aerialist have landing shocks equivalent to a vertical drop of 20 feet
to a flat surface.  This is over twice the landing shock of the Nordic Jumpers even though the Nordic
Jumpers travel at twice the velocity and fall twice as far.

Introduction
In the winter Olympics, two types of skiers, Nordic Jumpers and Freestyle Aerialists, are known for
their dazzling displays of aerial maneuvers that most spectators find incredible and possibly
dangerous.  The Aerial Jumpers in the Freestyle Skiing competition perform very high leaps with
twists and somersaults.  The 1998 Olympic winner, Eric Bergous (Figure 1), executed three complete
rotations with four twists.  This required extensive time in the air, which he would later reconcile
with when gravity pulled him back to earth.  At the Nordic Ski Jumps, Masahiko Harada and
Takanobu Okabe both flew 137 meters (449 ft) in distance.

Competition drives the skiers to fly higher and farther. The athletes risk falling upon impact to win
the competition.  Fortunately, the Federation of International Skiing1 (FIS) has imposed rules on the
designs of ski jumps to insure safety and minimize injuries.  The FIS specifications for Freestyle
Aerial jumps is shown in Figure 2.

Computer Model of Skier’s Flight
Nordic ski jumping has been modeled by Muller et al. (1995 and 1996).  They found that most
jumpers have a very small impact on the landing hill equivalent to a vertical drop of < 1 meter, even
though they fly distances over 100 meters (328 ft.) with vertical drops over 30 m (98 ft.). The
Nordic skiers experience light landings because they are flying close to the hill which is shaped for
their flight trajectory (Figure 1).

                                                
1 Federation Internationale de Ski, Blochenstrasse 2, CH-3653 Oberhofen/Thunersee, Switzerland and web site
http://www.zip.com.au/~birdman/fis.html.
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The Freestyle Aerial Jumpers use a much higher trajectory to perform rotations and twists. Judges
award points for the heights of the jumps along with the difficulty of the rotations and twists.
Distance is not a factor in Aerial Jumping as it is in Nordic Jumping.

Figure 1: Freestyle Aerial jumper Eric Bergous (left) and Nordic jumper Masahiko Harada (right).

To answer the question, “How hard do the Freestyle Aerialists land?” a smaller version of the Muller
model was used.  The impact of a skier on the landing hill is not simply the vertical distance he/she
drops because they land on a steep slope (~37°).  The skier also does not stop on the hill. The impact
the skier feels is the force it takes to change the skier’s direction from their flight to the slope of the
hill.  This is illustrated in Figure 3.  The skier’s direction of motion is shown by the vector A-B.  The
hill has a slope from A-C.  The skier’s velocity (VA-B) can be expressed as two orthogonal (right
angle) components.  The component along the hill is VA-C whereas the other component is VC-B.
Upon impact, the skier’s velocity will change from VA-B to VA-C.  The change in direction is angle (a)
and the velocity component VC-B will be absorbed in the landing impact.  The impact the skier feels is
the dissipation of VC-B.

Figure 2: Federation of International Skiing specifications for Freestyle Aerial hills.  Full details are
available at http://www.zip.com.au/~birdman/FTP.html under “1997/98 Freestyle Course
Standards”.
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Using the triangle in Figure 3, the skier’s velocity component perpendicular to the face of the hill,
VC-B, can be calculated from the skier’s velocity, VA-B, and the change in direction (a).

VC-B = VA-B.SINE(a) (1)

Figure 3: The skier lands at A traveling toward B, but will abruptly change direction toward C.

The flight trajectory model calculates the skier’s velocity and position for a series of small time
steps (Figure 4). The model starts with a speed and direction (velocity) at the point of takeoff and
then calculates how far the skier moves in each time increment.  For this model, time increments of
0.05 seconds were used which is about 0.5 m in displacement.  At the end of each increment, a new
velocity has to be calculated because forces have acted on the skier.  The process proceeds to a
second step where a new position is calculated using the average velocity of the time increment
followed by a re-calculation of the velocity.  This process is successively repeated many times (60-
100) until the skier arrives on the landing hill.

Figure 4: The large numbers are time steps of 0.05 seconds.  The non-orthogonal blue arrows show
the velocities at each point in time.  Orthogonal green arrows indicate velocity and distance
component vectors.

To simplify the calculations, the skier’s displacement vector is decomposed into horizontal and
vertical components (Figure 4). The horizontal component X increases to the right and the vertical
component Y increases upward. The skier’s position at the end of each time step is:

X2 = X1 + 0.05 × Vx (2)
Y2 = Y1 + 0.05 × (Vy1+Vy2) / 2 (3)

Subscripts 1 and 2 refer to the start and end of one time increment.
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The velocities are changed by the accelerations of the forces on the skier.  Since the speed of the
Aerial Jumper is relatively slow, aerodynamic lift and drag are not considered. However, Muller had
to consider aerodynamic forces for the Nordic jumper because of the greater velocities (23-27 m/s or
51-57 mph).  For the Aerial jumper, we assume the horizontal component (VX) is constant in time
and gravity is the only acceleration on the vertical component (VY).  Therefore, the formulas used to
calculate velocity components for the Aerial Jumper are:

Vx2 = Vx1 (4)
Vy2 = Vy1  - G × 0.05 (5)

G is 9.8 m/s2 (32.3 ft/s2).

The model starts with velocities at the takeoff of Vx0  and Vy0 , and then calculates Vx1  and Vy1  using
equations (4) and (5).  The position of point one, X1 and Y1, are calculated from equations (2) and
(3).  Then Vx2  and Vy2  are calculated followed by X2 and Y2, etc.

For the Aerial jumper we know the location of the takeoff point and the inclination angle, but not
the velocity.  Aerial jumpers can choose their velocity by selecting any starting position on the take
off ramp.  They vary their velocity for the air time needed for their maneuvers. The jumper’s
velocity can be estimated by assuming that the jumper intends to land in the lower part of the landing
slope.  This will give the maximum air time and also allow for the jumper to recover their balance on
the steep slope before skiing through the curve at the bottom of the hill and stopping in the out run
area.

A backward iterative method is used to find the takeoff velocity from the landing point.  It begins
with a guess of the takeoff velocity and running the model to find a landing point.  If the skier lands
too short with this velocity, the velocity is increased and the model re-run.  Conversely, if the skier
lands too long (or close to the bottom curve), the starting velocity is decreased and the model is
rerun.  The takeoff velocity can be found with a few iterations (<10).

The largest takeoff kicker in Figure 2 has an inclination of 55° and is positioned 8.1 meters back
from the start of the landing slope, which has a constant pitch of 37° and is 25 meters long. From
successive iterations we found that, at a takeoff velocity of 12.5 m/s (28 mph), would send the skier
26 meters to within 10 meters of the bottom of the slope.  For this flight the skier had an air time of
3.0 seconds and rose 5.5 meters (18 ft) above the take-off.  He/she dropped 18.7  meters (64 ft)
from the apex height to the landing.  The skier was traveling 20.5 m/s (45 mph) at an declination of
69° when hitting the hill.  From Figure 3, the impact velocity, VC-B, is 11 m/s.

Muller converted the vector VC-B to an equivalent drop from a fictitious height to a flat surface so
that comparisons could be made to other sports. The conversion uses the two basic equations for
acceleration and distance in a gravitational field, V = G × T and H = 0.5 × G × T2 resulting in:

H = 0.5 × VC-B
2 / G (6)

Using equation (6) the Aerial jumper’s impact velocity, VC-B, is equivalent to a vertical drop of 6.1
meters (20 ft).  A comparison between the landing impacts of Aerial and Nordic jumpers is given in
Table 1. Nordic jumper flights are calculated from a replica of the Muller model, which includes lift
and drag terms in equations 4 and 5 (see Muller et al., 1996 for details). Two landings are shown for
each type of skier, a short jump and a long competitive jump. The Aerial jumps differ only in
takeoff velocity whereas the Nordic Jumps differ in the leg spring of the skiers and the aerodynamic
forces in flight.  The first jump represents a junior skier weighting 80# with a vertical leg spring of 9
inches, and aerodynamic lift of 40# and drag of 48#. The second is an Olympic competitor weighting
130# with a vertical spring of 18 inches and aerodynamic lift of 78# and drag of 65#.



5

Table 1. Jump Parameters
       Take off Jump Total vertical Landing Equivalent drop Flight
Angle     Velocity   Distance fall distance VA-B VC-B to flat surface Time

Deg m/s (mi/hr) meters(feet) meters (feet) m/s m/s meters (feet) seconds
Aerial hill
 55° 9.7 (21.3) 15 (49) 10 (33) 15.1 7.9 3.2 (10) 2.2
 55° 12.5 (27.5) 26 (85) 19 (62) 20.5 11.0 6.1 (20) 3.0
Nordic hill

-10° 23.1 (50.8) 62 (203) 28 (92) 17.3 3.3 0.6 (2) 3.5
-10° 23.1 (50.8) 109(358) 54 (177) 21.7 6.9 2.4 (8) 5.9

Discussion
The Aerial jumper model shows landing impacts of 3.2-6.1 m (10-20 ft) in vertical drop whereas
Nordic jumpers experience much smaller impacts of 0.6-2.4 m.  A 20-foot fall could cause serious
injury.  It’s about the height of the roof on a two-story house. However, Freestyle Aerial jumping has
an exceptional record in that they have never had a debilitating injury in 22 years2.

The reason for Aerial jumping’s safety record is in the preparation of the landing hills and the
training and guidance by the coaches.  Aerial landing hills have to be soft with two or more feet of
soft snow that is never packed by skiers or grooming machines.  Before competitions, hill crews
loosen the snow with shovels and during competitions, they add extra snow between jumps.  The
competitors use different launching kickers based on the skill of the skiers. Also, Freestyle Aerialists
start their training using water pools in the summer where air is bubbled into the pools to soften the
landings.

Future Applications of the Model
The model described here can be applied to other sports for the same purpose.  Two possible
applications are water ski jumping and motorcycle stunts. To calculate the landing impacts in these
sports, you need to find the inclination angle of the take-off ramp (~5°-10°), the velocity, the
distance traveled, and the inclination of the landing ramp.  Aerodynamic drag also should be included
in Equations 4 and 5.  With a model, you could try different ramp inclinations and velocities to
estimate the best jump.

The computer code for this example is written in Fortran and available from the author.  The author
is a scientist by profession (meteorology) with a son who competes in Nordic Jumping.  He also is a
volunteer member of the hill crews at the Intervale Olympic Ski Jumps in Lake Placid, NY and the
Blackhawk Ski Club in Madison, WI, and a member of the National Ski Patrol.
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2 Peter Judge, Chairman, FIS Freestyle Subcommittee for Rules and Technical, e-mail PRJudge@compuserve.com


